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Part I: Conditioning



Introductory Material

Conditioning
20th C Maths starts being concerned with computability and not simply conceivability:

e 1-424-0-9y = 27 }<:>O.Ol><el+e2 —0-7862+4+1-709y = _1.173}
2 —0-8x4-1-7y = —1-2 e; —0-800x4-1-700y = —1-200

well-conditioned 1ill-conditioned

Turing coins the condition number and defines it in multiple ways:

. N-condition number: ||[A||z||A~!]|» where ||A||5 := \/TP(A*A)

. M-condition number: M(A)M(A_l) where M(A) := max \ml-j\

ji
The condition number > 1, and | is the best possible value

Turing [1948]



Introductory Material

Conditioning

Nowadays the problem of matrix inversion has the condition number k(Ax = b) = [|AllgpllA™ llop

It is the worst error in the output given a noisy input: say we observe b + 0b instead of b

b+ 68b—bl ||8b]
D] D]

Relative input error:

IA™'0 — AT (b +6b)||  ||AT'6D]]
|A-1D| |lA-1p|

Relative output error:

Worst relative output error relative to the relative input error:

o IA~16b|| ||6b|)
(Ax = b) = sup § ———TL/i 70
pov2o | IATDl D]



Introductory Material

Conditioning

A~16b|| ||6b
K(Ax = b):= sup —H 1 | /—H |
pev2o | IAT'D] |6l

i |[A~'sp|| 1B

= sup { ——
b.5b+0 |ob]|  |[A~1D]|

_ sup{ D] }sup |A~16D|
p20 UI[ATID] ) sp0 |ob||

= Suposn § ot L A7
R W °P

= ||AllopllA~ lop




Introductory Material

Conditioning

IA||IIA~Y| is also important in many other scenarios:

- Matrix Multiplication

- . AT =A@+ B NE .
Explicit Matrix Inversion: / < ||A|[||A™]|

) A=) A

- Iterative Inversion Methods: (from [Qu et al. 2022, https://arxiv.org/abs/2209.00809])
Jacobi | Gauss-Seidel | Steepest Descent | Conjugate Gradient

| k(A)—1 k(A)—1 k(A)—1 V(A1
linear convergence rates KE A; 3 RE A;+1 (HEA§+1)2 k(A)+1

Table 1 Rates of linear convergence of some iterative methods for solving the system Az =0

NB ||A]|[|[A7"]| is useful to know, but it is not the only way to encode difficulty

Recall Turing’s initial definitions
dist(A, Singular Matrices) = ||A~!||~! [Kahan 1966]

In many cases the condition number is as hard to calculate as the original problem



Introductory Material

From Problems to Algorithms

Recall the initial motivations for the concept of conditioning

The problems {Ax = b,A{(A),A,(A), .. } all admit time based’ solvers/algorithms

In these contexts ||A||||[A™!]| has a different meaning:

|
e.g. V-descent on EWTAW — bTw with A > 0 (solution @ w* = A~'b)

Algorithm: w*! = wk — a(Aw* — b)

Decompose along the eigenvectors of A: XK= QT(wk — w*) giving

Xt =1 —ad)xf = (1 — ad)*x)



Introductory Material

From Problems to Algorithms

1
V-descent on EWTAW — blw with A > 0 (solution @ w* = A~'b)
1 1
xl.k+ = (1 — a/ll-)xik = (1 — (x/ll-)k+ xl.o (2= QT (W* — w*))

Rates of convergence are dominated by those along extremal eigenvectors

So is the choice of

_ —1—-1
212 21aT) (A= 1A~
Optimal a = = —
M+t Ag2o 1 ANIAY + 1
Ad
Aq i
| P AllllA~Y =1
Optimal rate = =
A 1 A A_l — 1
/1—d+

So both stability and rate of convergence are governed by k(Ax = b) = ||A]|||A~}]|

Not only does k describe the generic difficulty of computing a solution, it dictates
performance of particular algorithms.



Introductory Material

Condition number in Sampling

Target in the form 7 « exp(—U(x)) on RY such that ml,; < V%U(x) <M1, for all x € R
U:R? > R is m-strongly convex and M-smooth

m-strong convexity: M-smoothness:

Unimodal : : :
V. .U(x) is M-Lipschitz

m measures the curvature of U(x) Discretisations work nicely

e.g. posterior with concave log-
likelihood, Gaussian prior

Minimum average acceptance ()
controlled [Andrieu et al 2022]

The condition number associated with sampling from = is

k := sup ||V2UX)|, sup ||VZU@)7!l,

xeR? xeR?

If mI, < V2U(x) < M1, is tight k = M/m

As k = 1, the eigenvalues of V%U(x) get squeezed together, and 7 starts to look
more like an isotropic Gaussian



Importance of the sampling condition number Introductory Material

Spectral Gap . e-Mixing Time
J +/logd G ian) ¢ \/ 2 .
" O( ) e . ¥ O(dk"log—) Dwivedi et al. [2019]
O K\/:l’ Lee et al. [2021] . €
> o 1
O logd . L . .
f O i’ ) Lee et al. [2021] . O(dklog 6) Dwivedi et al. [2019]
) K °
Q log d (on a Gaussian) ° ) 1
o) \/ = . 2
S O( ) *  O(d5klog —) Chen et al. [2019]
K\/c_i Lee et al. [2021] e
o Vv =
U o
C
5 :
O | . xd
< O(—) Andrieu et al. [2022] o O( 5 ) (e =e7!) Lee et al. [2021]
“;’ xd = log=d
O o
_l o

Key: ® - RWM e - MALA o - HMC All bounds up to logarithmic factors, mixing times in TV



Part |l: Preconditioning



P recon d |t | on | N g Introductory Material

Preconditioning is a transformation from the original problem to a new one

We do it to reduce the condition number:

e.g. starting with Ax = b make the transformation y = Mx, c = N~'b to get to the problem
NAMy = ¢ with condition number ||[NAM||||M~'A=IN7Y

When Y = g(X) = LX for the condition number of sampling from the distribution of Y is

K, := sup [[VSUW)I, sup VUM, = sup [IL™ VUL, sup |IL VU)LY,
yeR? yeR? x€R? x€R?

Used in all major MCMC software packages (Stan, Tensorflow, Pyro etc.) even
though theory is lacking.




Qur Contribution

Linear Preconditioning for Sampling

Intuition: set L to be the square root of some representative of V%U(x) and hope
that K; <k, doesn’t always work:

Diagonal Preconditioning: L = diag(Zﬂ)_%
Gaussian target:

_ . 11, 1 . _1 . _1 _
ViU(x) = Z;' so Kk = ||diag(X,)°Z; 'diag(Z,)?|, || diag(Z,) "2Z,diag(Z,) >, = IC; LI C,ll,
There exist Gaussian targets for which L = diag(Zﬂ)_% Increases the condition number

4.07, — 3.90, 1.66
2 =1-3.90,3.73, - 1.59| = «k = 23,000, x; = 31,000
1.66, — 1.59,0.72



Qur Contribution

Diagonal Preconditioning for Sampling

=

preconditioning

-
1

1 2 3 4 5
dimension




Qur Contribution

Linear Preconditioning: Bounding k;

Theorem: For a given preconditioner L € GL(R) such that there exists € > 0 for which

IV2U(x) — LL"||, < me (1)

for all x € RY, we can bound K; in the following way:

K <1+ ” € (1+1<(L)2€)
o o4(L)?

Existence of L in (1) is implied by ||V?U(x) — VzU(y)Hz < me for all x,y € RY therefore

Bounds inform decisions at each stage of the process: pre-check, construction, verification



Qur Contribution

Nonlinear Preconditioning

Call k, the condition number after general transform g: 2 — ¥

Proposition: It iIs impossible to use linear preconditioning to achieve optimality

(K‘g = 1) when 7 is not a Gaussian

Proposition: There exist targets with arbitrarily high condition number that gets
worse under any linear preconditioning whatsoever (excluding L € O(d))

Which g to use?



Take-aways

« Conditioning describes how well an algorithm works on a
problem via a guantity known as the condition number

e Finding the condition number is often as hard as the problem
Iitself: bounds on it are useful since...

e It Is ubiquitous in the fields of numerical linear algebra and
convex optimisation. It i1s less well known Iin sampling, but
nonetheless important.

e Preconditioning is a transformation which lowers the
condition number.

e We provide results on current preconditioning practices in
sampling.

e We provide generic bounds on the condition number.
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