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Part I: Conditioning



Conditioning

20th C Maths starts being concerned with computability and not simply conceivability:

Turing [1948]

Turing coins the condition number and defines it in multiple ways: 

• N-condition number:  where  

• M-condition number:  where 

∥A∥F∥A−1∥F ∥A∥F := Tr(A*A)

M(A)M(A−1) M(A) := max
ij

|mij |
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The condition number , and  is the best possible value≥ 1 1

e1

e2

well-conditioned

e2

0.01 × e1 + e2

⟺

ill-conditioned
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Nowadays the problem of matrix inversion has the condition number κ(Ax = b) = ∥A∥op∥A−1∥op
It is the worst error in the output given a noisy input: say we observe  instead of b + δb b

Relative input error: 
∥b + δb − b∥

∥b∥
=

∥δb∥
∥b∥

Relative output error: 
∥A−1b − A−1(b + δb)∥

∥A−1b∥
=

∥A−1δb∥
∥A−1b∥

Worst relative output error relative to the relative input error:

κ(Ax = b) := sup
b,δb≠0 { ∥A−1δb∥

∥A−1b∥
/
∥δb∥
∥b∥ }
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κ(Ax = b):= sup
b,δb≠0 { ∥A−1δb∥

∥A−1b∥
/
∥δb∥
∥b∥ }

= sup
b,δb≠0 { ∥A−1δb∥

∥δb∥
∥b∥

∥A−1b∥ }
= sup

b≠0 { ∥b∥
∥A−1b∥ } sup

δb≠0 { ∥A−1δb∥
∥δb∥ }

= supc≠0 { ∥Ac∥
∥c∥ } ∥A−1∥op

= ∥A∥op∥A−1∥op
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 is also important in many other scenarios:∥A∥∥A−1∥

- Matrix Multiplication 

- Explicit Matrix Inversion:  

- Iterative Inversion Methods: (from [Qu et al. 2022, https://arxiv.org/abs/2209.00809])

∥A−1 − (A + E)−1∥
∥A−1∥

/
∥E∥
∥A∥

≤ ∥A∥∥A−1∥

NB  is useful to know, but it is not the only way to encode difficulty∥A∥∥A−1∥

Recall Turing’s initial definitions
dist(A,Singular Matrices) = ∥A−1∥−1

In many cases the condition number is as hard to calculate as the original problem

[Kahan 1966]
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Recall the initial motivations for the concept of conditioning

The problems  all admit `time based’ solvers/algorithms{Ax = b, λ1(A), λd(A), . . . }

In these contexts  has a different meaning:∥A∥∥A−1∥

e.g. -descent on  with  (solution @ )∇
1
2

wT Aw − bTw A > 0 w* = A−1b

Algorithm: wk+1 = wk − α(Awk − b)

Decompose along the eigenvectors of :  givingA xk := QT(wk − w*)

xk+1
i = (1 − αλi)xk

i = (1 − αλi)k+1x0
i
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-descent on  with  (solution @ )∇
1
2

wT Aw − bTw A > 0 w* = A−1b

xk+1
i = (1 − αλi)xk

i = (1 − αλi)k+1x0
i

Rates of convergence are dominated by those along extremal eigenvectors

So is the choice of α

(xk := QT(wk − w*))

Optimal α =
2

λ1 + λd
=

1
λd

2
λ1

λd
+ 1

=
2∥A−1∥

∥A∥∥A−1∥ + 1

Optimal rate =

λ1

λd
− 1

λ1

λd
+ 1

=
∥A∥∥A−1∥ − 1
∥A∥∥A−1∥ − 1

So both stability and rate of convergence are governed by κ(Ax = b) = ∥A∥∥A−1∥

Not only does  describe the generic difficulty of computing a solution, it dictates 
performance of particular algorithms.

κ

(λd = ∥A−1∥−1)



Condition number in Sampling

Target in the form  on  such that  for all : 
 is -strongly convex and -smooth

π ∝ exp(−U(x)) ℝd mId ≤ ∇2
xU(x) ≤ MId x ∈ ℝd

U : ℝd → ℝ m M

The condition number associated with sampling from  is π

κ := sup
x∈ℝd

∥∇2
xU(x)∥2 sup

x∈ℝd
∥∇2

xU(x)−1∥2

If  is tight mId ≤ ∇2
xU(x) ≤ MId κ = M/m

As , the eigenvalues of  get squeezed together, and  starts to look 
more like an isotropic Gaussian

κ → 1 ∇2
xU(x) π

Introductory Material

-strong convexity:m
Unimodal

e.g. posterior with concave log-
likelihood, Gaussian prior

 measures the curvature of m U(x)

-smoothness:M
 is -Lipschitz∇xU(x) M

Discretisations work nicely

Minimum average acceptance ( ) 
controlled [Andrieu et al 2022]

α0



Importance of the sampling condition number
Spectral Gap -Mixing Timeϵ
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Dwivedi et al. [2019]
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Chen et al. [2019]

O(dκ2 log
1
ϵ

)

O(dκ log
1
ϵ

)

O(d 2
3κ log

1
ϵ

)

( ) Lee et al. [2021]ϵ = e−1O(
κd

log2 d
)

O(
log d

κ d
)

O(
log d

κd
)

(on a Gaussian) 
Lee et al. [2021]

Lee et al. [2021]

O(
log d

κ d
)

O(
1
κd

) Andrieu et al. [2022]

(on a Gaussian) 
Lee et al. [2021]

Introductory Material

All bounds up to logarithmic factors, mixing times in TV
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Preconditioning is a transformation from the original problem to a new one

We do it to reduce the condition number:

e.g. starting with  make the transformation  to get to the problem 
 with condition number 

Ax = b y = Mx, c = N−1b
NAMy = c ∥NAM∥∥M−1A−1N−1∥
When  for the condition number of sampling from the distribution of  is Y = g(X) = LX Y

κL := sup
y∈Rd

∥∇2
yŨ(y)∥2 sup

y∈Rd
∥∇2

yŨ(y)−1∥2 = sup
x∈Rd

∥L−T ∇2
xU(x)L−1∥2 sup

x∈Rd
∥L∇2

xU(x)−1LT∥2

Used in all major MCMC software packages (Stan, Tensorflow, Pyro etc.) even 
though theory is lacking.

g

𝖷 𝖸



Linear Preconditioning for Sampling
Our Contribution

Intuition: set  to be the square root of some representative of  and hope 
that , doesn’t always work:

L ∇2
xU(x)

κL ≪ κ

Diagonal Preconditioning: L = diag(Σπ)− 1
2

Gaussian target: 

 so ∇2
xU(x) = Σ−1

π κL = ∥diag(Σπ)1
2Σ−1

π diag(Σπ)1
2∥2∥diag(Σπ)− 1

2 Σπdiag(Σπ)− 1
2 ∥2 = ∥C−1

π ∥2∥Cπ∥2

There exist Gaussian targets for which  increases the condition numberL = diag(Σπ)− 1
2

Σπ =
4.07, − 3.90, 1.66

−3.90, 3.73, − 1.59
1.66, − 1.59, 0.72

⟹ κ = 23,000, κL = 31,000



Diagonal Preconditioning for Sampling
Our Contribution



Linear Preconditioning: Bounding κL

Our Contribution

Bounds inform decisions at each stage of the process: pre-check, construction, verification

Theorem: For a given preconditioner  such that there exists  for whichL ∈ GLd(ℝ) ϵ > 0

∥∇2
xU(x) − LLT∥2 ≤ mϵ

for all , we can bound  in the following way:x ∈ ℝd κL

κL ≤ (1 +
m

σd(L)2
ϵ) (1 + κ(L)2ϵ)

(1)

Existence of  in (1) is implied by  for all , thereforeL ∥∇2U(x) − ∇2U(y)∥2 ≤ mϵ x, y ∈ ℝd



Nonlinear Preconditioning
Our Contribution

Call  the condition number after general transform κg g : 𝒳 → 𝒴

Proposition: It is impossible to use linear preconditioning to achieve optimality 
( ) when  is not a Gaussian κg = 1 π

Proposition: There exist targets with arbitrarily high condition number that gets 
worse under any linear preconditioning whatsoever (excluding )L ∈ O(d)

Which  to use?g



Take-aways

• Conditioning describes how well an algorithm works on a 
problem via a quantity known as the condition number 

• Finding the condition number is often as hard as the problem 
itself: bounds on it are useful since… 

• It is ubiquitous in the fields of numerical linear algebra and 
convex optimisation. It is less well known in sampling, but 
nonetheless important. 

• Preconditioning is a transformation which lowers the 
condition number. 

• We provide results on current preconditioning practices in 
sampling. 

• We provide generic bounds on the condition number.



Thanks! 🐒
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