


Variational Inference (VI)
VI is optimisation over the space of distributions

Find q* = argminq∈𝒫(ℝd)d (q, π)

 is not parametrisable with any parameter that could fit on 
a computer. Instead we do:
𝒫 (ℝd)
Purpose is to approximate  with 𝔼π [f (X)] 𝔼q* [f (X)]

Find  and compute θ* = argminθ∈Θd (qθ, π) 𝔼qθ* [f (X)]
So VI is biased (i.e.  in general)qθ* ≠ π
Often  is `nice’: 
• Its properties (e.g. moments) can be read off 
• Sampleable IID

qθ

So VI is fast (once we’ve found )qθ*



VI cont.
Often  is a Bayesian posterior with  as 
data

π = π ( ⋅ |y) y

KL (qθ∥π ( ⋅ |y)) + 𝔼qθ [log
π (X, y)
qθ (X) ] = log π (y)

Define 

ELBO (θ) := 𝔼qθ [log
π (X, y)
qθ (X) ]

Decompose

ELBO (θ) = 𝔼qθ [log π (X, y)] + 𝔼qθ [−log qθ (X)]



Markov chain Monte Carlo (MCMC)
We can’t easily access the properties of  by, say, 
sampling from it IID

π

Therefore MCMC forms a sequence of measures 
 that tend to the target (in some sense){μt}∞

t=0

In particular, measures are represented by states 
sampled from them , and the dependencies 
between these states is Markovian

{Xt}∞
t=0



MCMC cont.

Therefore MCMC is slow because it is inherently serial 
i.e. to get  we need  for which we need  etc.Xt Xt−1 Xt−2

But it is asymptotically exact e.g. 
1

T − T0

T

∑
t=T0+1

f (Xt) → 𝔼π [f (X)] a.s.

Markovian dependence (often) increases the variance of 
the estimators formed with the states {Xt}∞

t=0

𝔼π [f (X)] ≈
1

T − T0

T

∑
t=T0+1

f (Xt)



Markov Kernel Notation
A time-homogeneous Markov chain can be defined by a Markov 
kernel  for K (x → ⋅ ) ∈ 𝒫 (ℝd) x ∈ ℝd

 can be viewed as an operator on : for all 
 define  with

K 𝒫 (ℝd)
μ ∈ 𝒫 (ℝd) μK ∈ 𝒫 (ℝd)
μK (A) = ∫ℝd

μ (dx) K (x → A)  for all A ∈ ℬ (ℝd)
i.e. to sample from  we simply sample  and then X ∼ μK Y ∼ μ
X ∼ K (Y → ⋅ )

So {μt}∞
t=0

= {μ0Kt}∞
t=0

If  then we call  an invariant distribution of π = πK π K



Markov chain theory
We assume that  (in some sense) for all μ0Kt → π μ0 ∈ 𝒫 (ℝd)
[Meyn and Tweedie 1993 Proposition 13.2.2]: if  is an invariant 
measure of  then  is non-increasing in 

π
K ∥μ0Kt − π∥TV t

Key insight 1:  is closer to  than μ0Kt π μ0
Much of MCMC theory is the attempt to find conditions under 
which existing Markov kernels obey

d (μ0Kt, π) ≤ C (μ0) r (t) + b
Where  is monotonically decreasing,  and  depend on  
(e.g. via its parametrisation/tuning) and 

r (t) r b K
π

Key insight 2: Efficiency of MCMC is sensitive to its 
parametrisation/tuning and initial distribution



MCMC within VI: General Idea

Using Key Insight 1 we know that  will push a variational 
distribution  closer to 

K
q π

Using Key Insight 2 we know that how close will depend on  
and : therefore we can use variational methods to optimise over 
the  space and the  space

q
K
q K



Markov chain VI [Salimans, Kingma, 
Welling 2015]
Main Idea: Use the th state in an MCMC chain as a variational 
approximation i.e. use 

T
qθ = μ0KT

Problem: ELBO needs access to the density of μ0KT

Solution:

ELBOaux = ELBO − 𝔼μ0KT [KL (⋯)]
KL is wrt to a new distribution that is optimised over. Authors define

ELBO = log π (x) − KL (μ0KT∥π)

Where
KL (⋯) = KL (new variational distribution∥reverse Markov transition)

So to optimise  we’re simultaneously optimising over  
and the approximation to the reverse of 

ELBOaux K
K



Markov chain VI [Salimans, Kingma, 
Welling 2015] cont.
We can sample from  and so we can get an unbiased 
estimate of 

μ0KT

ELBOaux
Therefore we can use autodifferentiation to take the derivative of the 
method by which we get the estimate to give us an unbiased 
estimate of the gradient of ELBOaux
Gradients are calculated wrt the variational approximation to the 
reverse Markov transition, and the parameters of K



Markov chain VI [Salimans, Kingma, 
Welling 2015] cont.
Problem: accept/reject chains mean  is no longer 
continuously differentiable (wrt some parameter)

ELBOaux

Solution: Rao-Blackwellise  wrt that parameterELBOaux
Problem: This operation is exponentially expensive in the chain 
length
Takeaways: 
• The ELBO is no longer calculable if using a Markov kernel 
• Accept\reject chains cause discontinuity in the objective 

• Although accept/reject chains are usually the only ones for 
which we can ensure  invariance 

• According to the authors, improving  reduces the variance of 
gradient estimates

π
K



Amortised MCMC [Li, Turner, Liu 
2017]
MCMC algorithms are constructed so that  is the unique solution 
to the fixed point equation  (this + other conditions ensures 
that )

π
π = πK

μ0Kt → π
Approximating  can therefore be done by approximating a solution 
to the fixed point equation:

π

θ* = argminθ∈Θd (qθKT, qθ)
So do

θt = θt−1 − η∇θd (qθt−1
KT, qθt−1)

Problem:  needs density evaluation of d = KL qθKT

Solution: use a different  where 
• We don’t need to evaluate the density 
• Gradients can be estimated using Monte Carlo

d



Amortised MCMC [Li, Turner, Liu 
2017]
This approach can be viewed as the fine-tuning of a coarser model:

Takeaways: 
• Again we have to reformulate or find a new objective due to 

effect of the Markov kernel on the approximation density 
• Authors observe different dynamics for different ’s which is 

interesting 
• From the fixed point equation:  should in theory be fine 

• But practically  might be highly inefficient i.e. an accept/
reject kernel with a high rejection rate

T

T = 1
K



The Variationally Inferred Sampler 
[Gallego, Ríos Insua 2021]

In [Salimans, Kingma, Welling 2015] the authors optimise K

Our variational approximation is μ0KT

In [Li, Turner, Liu 2017] the authors optimise μ0

In [Gallego, Ríos Insua 2021] the authors optimise both  and μ0 K

i.e. find 

(θ*, η*) = argminθ∈Θ,η∈Γℒ (qθKT
η , π)

As always, the entropy term in the ELBO is intractable



Questions



VI within MCMC
As we saw in [Gallego, Ríos Insua 2021], the parameters of  can 
be optimised

K

This idea has been explored in the subjects of `preconditioning’ and 
`adaptive MCMC’ that have been around for >20 years

However it’s not easy to distil the efficiency of  down to a single 
quantity (like, say, the ELBO in VI)

K

According to folklore understanding, properties of  should look 
like properties of 

K
π

E.g. we might want  for all CovK(x → ⋅ ) (X) = Covπ (X) x ∈ ℝd

Otherwise, unless  has a distribution as a tuning parameter, it’s 
not fully clear how to straightforwardly plug VI into MCMC

K



Nonlinear Preconditioning via 
Transport based VI
Transport based VI pushes a simple distribution  through a 
diffeomorphism  to approximate 

ν
Tθ : ℝd → ℝd π

i.e. find
θ* = argminθ∈ΘKL (Tθ♯ν∥π)

If  is an `easily sampleable’ distribution and the VI is successful 
then  will be low and  will 
be `easily sampleable’

ν
KL (Tθ♯ν∥π) = KL (ν∥T−1

θ ♯π) T−1
θ ♯π

1. Find  using VI 
2. Run an MCMC on a  target 
3. Transform states of the resulting Markov chain through 

θ*
T−1

θ* ♯π
Tθ*



Nonlinear Preconditioning via 
Transport based VI

Methods developed according to this approach fall roughly into two 
categories: 
1. Measure Transport (Papers from Youssef Marzouk, [Kim et al. 

2013]) 
2. Normalising flows (Papers from Marylou Gabrié, [Hoffman et al. 

2022], [Kanwar 2024])

These categories can be distinguished by the form of  
1.  has the form of a Knothe-Rosenblatt map 
2.  is a normalising flow

Tθ
Tθ
Tθ

We need  to be invertible, to have a Jacobian whose determinant 
is easily calculable, to be expressive.

Tθ



Adaptive MCMC
MCMC Kernels usually have tuning parameters
`Good’ values of these parameters are often calculable using 
expectations wrt  or  (notions of optimality are unclear) π K
E.g. the unadjusted Langevin algorithm with parameter  
(full rank)

L ∈ ℝd×d

Xt+1 = Xt +
σ2

2
LL⊤ ∇log π (Xt) + σLξ where ξ ∼ 𝒩 (0,Id)

There are various justifications for
LL⊤ = Covπ (X)  and LL⊤ = Covπ (∇log π (X))−1

See e.g. [Titsias 2023, Hird and Livingstone 2025]
Or we may want to maximise the expected acceptance probability 
of an accept/reject method (hence the expectation is wrt the 
proposal distribution)



Adaptive MCMC
Key Idea: Since we get approximate samples from  and exact 
samples from the proposal, we can optimise as the chain runs:

π

Fusion with VI: Use VI methods to optimise



Gradient Based Adaptive MCMC 
[Titsias and Dellaportas 2019]
Let  be an accept/reject kernel with proposal K
qθ (x → ⋅ ) ∈ 𝒫 (ℝd)
Define the `speed measure’: 

sθ (x) := exp (βℋqθ(x → ⋅ ))∫ℝd

qθ (x → dy) α (x → y; θ)
Derive a lower bound on :log sθ (x)

ℱθ (x) := ∫ℝd

qθ (x → dy) log α (x → y; θ) + βℋqθ(x → ⋅ )

And maximise at each step of the chain using a one sample Monte 
Carlo estimator
Note: Similarity with ELBO



IMH with Normalising Flows [Brofos, 
Gabrié et al. 2022]
Let  be a normalising flow and  be a 
simple distribution

Tθ : ℝd → ℝd ν ∈ 𝒫 (ℝd)

Authors want to maximise  which is the same as 
wanting to minimise 

𝔼π [log Tθ♯ν (X)]
KL (π∥Tθ♯ν)

 is then used as a proposal distribution in an Independent 
Metropolis Hastings kernel
Tθ♯ν

So for each new state  in the Markov chain do:Xt

θt+1 = θt + εn ∇log Tθ♯ν (Xt)
Since we get approximate samples from  we can minimise the 
forward KL!

π



The difficulty of integrating VI into 
MCMC
This last example illustrates what I view to be a fundamental 
difficulty when trying to use VI in MCMC:
An MCMC Kernel (and its components e.g. proposal) is 
fundamentally local
A variational distribution is fundamentally global

Therefore either 
• Integrate VI into a Monte Carlo method that is global in some 

sense 
• e.g. Rejection Sampler, Importance Sampler, Independent 

Metropolis Hastings 
• These are known to fail catastrophically 

• Or work out some clever solution



The difficulty of integrating VI into 
MCMC



Summary

• MCMC in VI:  is closer to  than  
• The density of  is incalculable so either a new objective 

must be found, or the ELBO must be approximated 
• Accept/reject chains are attractive to use but come with 

immediate drawbacks 
• The optimisation process is dependent on  

• VI in MCMC: 
• Transport based VI can be easily fit into the MCMC framework 
• Otherwise it’s difficult to straightforwardly apply VI to MCMC 

because of the conflict between the locality of the Markov 
kernel and the global nature of the variational approximation 

qKT π q
qKT

K


