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Variational Inference (V)

VI Is optimisation over the space of distributions

Find g™ = argmian@(Rd)d (q, Jt)

Purpose is to approximate [ [f(X)] with [ [f(X)]

P (Rd) IS not parametrisable with any parameter that could fit on
a computer. Instead we do:

Find 6* = argmin,_gd (qe, 71') and compute £, | [f(X)]

So Vlis biased (i.e. gy« # & in general)
Often gy is nice’:
® |ts properties (e.g. moments) can be read off
o Sampleable IID

So VI is fast (once we’ve found gy+)



VI cont.

Oftemz=7r(-\y) S a

data

JZ(X,y)
KL (goll (-1y) ) +E, llog 5

Define

ELBO (0) :=E, |log

Decompose

ELBO (0) =

do

T (X,y)

Go (X)

3ayesian posterior with y as

] = logx (y)

:logﬂ(X,y): +E, [—log q@(X)]



Markov chain Monte Carlo (MCMCQC)

We can’t easily access the properties of & by, say,
sampling from it [ID

Therefore MCMC forms a sequence of measures
0
{ 'Mt}t—O that tend to the target (in some sense)

In particular, measures are represented by states
o0
sampled from them {Xf}t—o’ and the dependencies

between these states I1Is Markovian



MCMC cont.

Markovian dependence (often) increases the variance of
0
the estimators formed with the states {X }

R [fO0] % —— TO > 7(x

(=Ty+1
Therefore MCMC is slow because it is inherently serial
.e. to get X, we need X,_; for which we need X,_, etc.

Sut 1t 1s asymptotically exact e.g.

Z f(X = (0] as.

t—TO+1




Markov Kernel Notation

A time-homogeneous Markov chain can be defined by a Markov
kernel K(x = - ) € P (Rd) for x € R?

K can be viewed as an operator on & (Rd): for all
u € P (R define uK € P (RY) with

uk (A) = [ pu (dx) K (x — A) forallA € B (R?)
Rd

.e. to sample from X ~ uK we simply sample ¥ ~ u and then
X~K(Y— ")

S {f g = WK}

f 7 = K then we call 7 an invariant distribution of K



Markov chain theory

We assume that p,K' — 7 (in some sense) for all y, € P (Rd)

[Meyn and Tweedie 1993 Proposition 13.2.2]: if £ is an invariant
measure of K then || K" — 7|1y is non-increasing in

Key insight 1: 14,K" is closer to & than

Much of MCMC theory is the attempt to find conditions under
which existing Markov kernels obey

d (pK', ) < C (o) r(®)+ b

Where r (f) is monotonically decreasing, r and b depend on K
(e.qg. via its parametrisation/tuning) and

Key insight 2: Efficiency of MCMC Is sensitive to its
parametrisation/tuning and initial distribution




MCMC within VI: General Idea

Using Key Insight 1 we know that K will push a variational
distribution g closer to

Using Key Insight 2 we know that how close will depend on ¢g
and K: therefore we can use variational methods to optimise over

the g space and the K space



Markov chain VI [Salimans, Kingma,
Welling 2015]

Main Idea: Use the Tth state in an MCMC chain as a variational
approximation i.e. use g, = oK'

Problem: ELBO needs access to the density of yyK !

Solution:
ELBO = log  (x) — KL (poK" || 7)

KL is wrt to a new distribution that is optimised over. Authors define

ELBOgyux = ELBO — [EMOKT [KL(---)]
Where

KL(---) = KL (new variational distribution||reverse Markov transition)

So to optimise ELBOgx we’re simultaneously optimising over K
and the approximation to the reverse of K



Markov chain VI [Salimans, Kingma,
Welling 2015] cont.

We can sample from pnK !"and so we can get an unbiased

estimate of ELBOgx

Therefore we can use autodifferentiation to take the derivative of the
method by which we get the estimate to give us an unbiased

estimate of the gradient of ELBOgx
Gradients are calculated wrt the variational approximation to the
reverse Markov transition, and the parameters of K

logit m
eeeee

logit m



Markov chain VI [Salimans, Kingma,
Welling 2015] cont.

Problem: accept/reject chains mean ELBOgx is no longer
continuously differentiable (wrt some parameter)

Solution: Rao-Blackwellise ELBOgx wrt that parameter

Problem: This operation is exponentially expensive in the chain
length

Takeaways:
 The ELBO is no longer calculable if using a Markov kernel

* Accept\reject chains cause discontinuity in the objective
» Although accept/reject chains are usually the only ones for

which we can ensure st invariance

» According to the authors, improving K reduces the variance of
gradient estimates




Amortised MCMC [Li, Turner, Liu
2017]

MCMC algorithms are constructed so that x is the unique solution

to the fixed point equation 7 = 7K (this + other conditions ensures
that u,K' — 7)

Approximating i can therefore be done by approximating a solution
to the fixed point equation:

0* = argmin,_.d (g,K". gp)

0,=0,_,—nVyd (q@_lKT’ QHH)

Problem: d = KL needs density evaluation of g,K*

So do

Solution: use a different d where

 We don't need to evaluate the density
» Gradients can be estimated using Monte Carlo



Amortised MCMC [Li, Turner, Liu
2017]

This approach can be viewed as the fine-tuning of a coarser model:

Lo | KSD |

— T=1,7=0.10 |
— T=5, n=0.02
— T=10, »=0.01

-6 -4 _—2_ 0 2 4 6
Variational Program

Takeaways:

* Again we have to reformulate or find a new objective due to
effect of the Markov kernel on the approximation density

« Authors observe different dynamics for different 1’s which is
Interesting

« From the fixed point equation: 7' = 1 should in theory be fine

» But practically K might be highly inefficient i.e. an accept/
reject kernel with a high rejection rate




The Variationally Inferred Sampler
Gallego, Rios Insua 2021}

Our variational approximation is psK !
In [Salimans, Kingma, Welling 2015] the authors optimise K

In [Li, Turner, Liu 2017] the authors optimise p;,

In [Gallego, Rios Insua 2021] the authors optimise both py and K

.e. find
(9*,;7*) = argmin,_, ﬂerff (qQKT, n)

As always, the entropy term in the ELBO is intractable



Questions



VI within MCMC

As we saw in [Gallego, Rios Insua 2021], the parameters of K can
be optimised

This idea has been explored in the subjects of preconditioning’ and
‘adaptive MCMC’ that have been around for >20 years

However it's not easy to distil the efficiency of K down to a single
guantity (like, say, the ELBO in VI)

According to folklore understanding, properties of K should look
like properties of &

E.g. we might want Covg, — .y (X) = Cov, (X) for all x € R4

Otherwise, unless K has a distribution as a tuning parameter, it’s
not fully clear how to straightforwardly plug VI into MCMC



Nonlinear Preconditioning via
Transport based V|

Transport based VI pushes a simple distribution v through a
diffeormorphism 1 : RY - R to approximate 7

.e. find
0* = argmin,_ KL (T fv||x)

If v is an easily sampleable’ distribution and the VI is successful

then KL (THﬁUHJZ) = KL (uHTe_lfm) will be low and T@_lﬂﬂ' will
be easily sampleable’

1. Find 6* using VI
2. Run an MCMC on a TH_*lﬂﬂ' target

3. Transform states of the resulting Markov chain through 1 s




Nonlinear Preconditioning via
Transport based V|

Methods developed according to this approach fall roughly into two

categories:
1. Measure Transport (Papers from Youssef Marzouk, [Kim et al.
2013])

2. Normalising flows (Papers from Marylou Gabrié, [Hoffman et al.
2022], [Kanwar 2024])

'hese categories can be distinguished by the form of 1
1. 1, has the form of a Knothe-Rosenblatt map

2. 1,is a normalising flow

We need 1, to be invertible, to have a Jacobian whose determinant
IS easily calculable, to be expressive.



Adaptive MCMC

MCMC Kernels usually have tuning parameters

‘Good’ values of these parameters are often calculable using
expectations wrt & or K (notions of optimality are unclear)

E.g. the unadijusted Langevin algorithm with parameter L € R4

(full rank) ,
X11 = X, + 2-LLTViogx (X)) + oLE where £ ~ .4 (0.1

There are various justifications for
LLT = Cov, (X) and LLT = Cov, (Vlegz (X))~
See e.q. [Titsias 2023, Hird and Livingstone 2025]

Or we may want to maximise the expected acceptance probability
of an accept/reject method (hence the expectation is wrt the
proposal distribution)



Adaptive MCMC

Key ldea: Since we get approximate samples from & and exact
samples from the proposal, we can optimise as the chain runs:

X1 > Xo > X3 > X4 o T
o 7

X > Xo > X3 X IT
1 » 29 » 23 4 I

Fusion with VI: Use VI methods to optimise



Gradient Based Adaptive MCMC
[ Titsias and Dellaportas 2019]

Let K be an accept/reject kernel with proposal
gyp(x = +) € @(Rd)

Define the speed measure’:

Sy (x) 1= exp (ﬁ%%(x . ,)> N dy (x — dy) a (x — y; 6’)

Derive a lower bound on log s, (x):

Fo() = | gy(x—dy)loga(x - y;0) +px
JRd
And maximise at each step of the chain using a one sample Monte
Carlo estimator

Note: Similarity with ELBO

gox = +)



IMH with Normalising Flows [Brofos,
Gabrié et al. 2022]

Let Ty : R? — R be a normalising flow and v € P (IRd) be a
simple distribution

Authors want to maximise [E llog T v (X )] which is the same as
wanting to minimise KL (JZ'HTQﬂI/)

Tgﬁv IS then used as a proposal distribution in an Independent
Metropolis Hastings kernel

So for each new state X, in the Markov chain do:
0.1 =0,+¢,Viog Tyfv (X,)

Since we get approximate samples from & we can minimise the
forward KL!



The difficulty of integrating VI into
MCMC

his last example illustrates what | view to be a fundamental
difficulty when trying to use VI in MCMC.:

An MCMC Kernel (and its components e.qg. proposal) is
fundamentally local

A variational distribution is fundamentally global

Therefore either
® |ntegrate VI into a Monte Carlo method that is global in some

Sense
® c.g. Rejection Sampler, Importance Sampler, Independent

Metropolis Hastings
® [hese are known to fail catastrophically
® Or work out some clever solution



The difficulty of integrating VI into
MCMC




Summary

e MCMC in VI: gK' is closer to 7 than g

e The density of gK I'is incalculable so either a new objective
must be found, or the ELBO must be approximated

® Accept/reject chains are attractive to use but come with
immediate drawbacks

e The optimisation process is dependent on K
e V| in MCMC:
® [ransport based VI can be easily fit into the MCMC framework
e Otherwise it’s difficult to straightforwardly apply VI to MCMC
because of the conflict between the locality of the Markov
kernel and the global nature of the variational approximation



